If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-320x+768=0
a = 24; b = -320; c = +768;
Δ = b2-4ac
Δ = -3202-4·24·768
Δ = 28672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28672}=\sqrt{4096*7}=\sqrt{4096}*\sqrt{7}=64\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-64\sqrt{7}}{2*24}=\frac{320-64\sqrt{7}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+64\sqrt{7}}{2*24}=\frac{320+64\sqrt{7}}{48} $
| n8+10=34 | | -3a+26=17 | | 2+m-5=28 | | 5z-8z=15 | | 17-6n=-43 | | 17-6n=43 | | Y=12-7(x-3) | | 9y-420=30 | | X2-10x=5x | | x2+1x+-20=0 | | 6x-36^x=-9 | | 2v+6=7 | | -4y+7=2y-11 | | 3^y+3^(y+2)=90 | | w-8=11 | | 48x^2-x^2-9=0 | | -5x+2(11/7x+5/7)=7 | | y=-3+2+8 | | 3w-7+(w+1)=11w+1 | | y=-32=8 | | (4.20x-5.80)(7.20x-9.20)=8.00x+11.9 | | x/3x+5=11 | | (5x-22)-3=-6 | | x^2-21x-882=0 | | 5x-22-3=-6 | | 40-2x=18 | | 4x-1+6x+5+15x+1=180 | | 162/3^2x-4=2 | | 36x^2-54x+12=0 | | 1.5*10^-5=x^2/1-x | | 3k^2+5k-4=0 | | m=15/8 |